AIRLINE OPERATIONS MENU

Maintenance Deferrals per Minimum Equipment List (MEL) Procedures, OR, “How did I get an AOG order for an AOG that will occur three days from now?”

AIRLINE COMPONENT RELIABILITY PROGRAMS.
Actual Excerpt from an AFM, Aircraft Flight Manual, noting the applicable FAR, which is the basis for air carrier MEL procedures

Section 1 General

A. Reporting Maintenance Discrepancies
 Reference: 14 CFR 121.563
 1. The PIC shall ensure that ALL maintenance discrepancies found during preflight are entered in the maintenance log (Form GMM 101) of the aircraft before the flight.
 2. Before each flight the PIC shall ascertain the status of each discrepancy entered in the log.
 3. The PIC shall ensure that ALL maintenance discrepancies occurring during flight, or discovered during the preflight and post flight inspection of the aircraft, are entered in the maintenance log (Form GMM 101) of the aircraft.

B. Inoperable Instruments & Equipment
 Reference: 14 CFR 121.628
 1. No person may take off an aircraft with inoperable instruments or equipment unless the following conditions are met:
 a. An approved Minimum Equipment List (MEL) and/or a Configuration Deviation List (CDL) exists for that aircraft, and
 b. The aircraft is listed in the Company’s Operating Specifications.
A Master Minimum Equipment List (MMEL) is developed by the FAA, with participation by the aviation industry, to improve aircraft utilization and thereby provide more convenient and economic air transportation for the public. The FAA approved MMEL includes those items of equipment related to airworthiness and operating regulations and other items of equipment which the Administrator finds may be inoperative and yet maintain an acceptable level of safety by appropriate conditions and limitations; it does not contain obviously required items such as wings, flaps, and rudders. The MMEL is the basis for development of individual operator MELs which take into consideration the operator's particular aircraft equipment configuration and operational conditions. Operator MELs, for administrative control, may include items not contained in the MMEL; however, relief for administrative control items must be approved by the Administrator. An operator's MEL may differ in format from the MMEL, but cannot be less restrictive than the MMEL. The individual operator's MEL, when approved and authorized, permits operation of the aircraft with inoperative equipment.
TOUR OF A TYPICAL FAA Master MEL PAGE

ATA Chapter
Repair Category. See slide
How many does this aircraft have?
How many will be required for the flight to continue?

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
MASTER MINIMUM EQUIPMENT LIST

AIRCRAFT:
BOMBARDIER CL-600-2B19/-2C10/-2D15/-2D24/-2E25

REVISION NO:
18

DATE:
07/09/2012

<table>
<thead>
<tr>
<th>SYSTEM & SEQUENCE NUMBERS</th>
<th>ITEM</th>
<th>NUMBER INSTALLED</th>
<th>NUMBER REQUIRED FOR DISPATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24 - ELECTRICAL POWER</td>
<td>1</td>
<td>A</td>
</tr>
</tbody>
</table>

1. Integrated Drive Generator (IDG) Systems
 1) Constant Speed Drives (CSD) (600-2B19)

(M)(O) Symbol indicates a requirement for a specific maintenance procedure which must be accomplished prior to operation with the listed item inoperative.

(O) Symbol indicates a requirement for a specific operations procedure which must be accomplished in planning for and/or operating with the listed item inoperative.

Remarks or Exceptions:

1. One may be inoperative provided:
 a) Respective GEN 1/2 switch is selected to OFF/RESET,
 b) Respective IDG is disconnected,
 c) APU generator is operated continuously throughout flight,
 d) AFM performance corrections for APU ON applied,
24. **Repair Category.** All users of an MEL approved under parts 91K, 121, 125, 129, 135 and 142 must effect repairs of inoperative instrument and equipment items, deferred in accordance with the MEL, at or prior to the repair times established by the following letter designators.

 A. Repair Category A. This category item must be repaired **within the time interval specified in the “Remarks or Exceptions” column of the aircraft operator’s approved MEL.** For time intervals specified in “calendar days” or “flight days”, the day the malfunction was recorded in the aircraft maintenance record/logbook is excluded. For all other time intervals (i.e., flights, flight legs, cycles, hours, etc.), repair tracking begins at the point when the malfunction is deferred in accordance with the operator’s approved MEL.

 B. Repair Category B. This category item must be repaired **within 3 consecutive calendar-days (72 hours)** excluding the day the malfunction was recorded in the aircraft maintenance record/logbook. For example, if it were recorded at 10 a.m. on January 26th, the 3-day interval would begin at midnight the 26th and end at midnight the 29th.

 C. Repair Category C. This category item must be repaired **within 10 consecutive calendar-days (240 hours)** excluding the day the malfunction was recorded in the aircraft maintenance record/logbook. For example, if it were recorded at 10 a.m. on January 26th, the 10-day interval would begin at midnight the 26th and end at midnight February 5th.

 D. Repair Category D. This category item must be repaired **within 120 consecutive calendar-days (2880 hours)** excluding the day the malfunction was recorded in the aircraft maintenance record/logbook.
<table>
<thead>
<tr>
<th>ITEM</th>
<th>NUMBER INSTALLED</th>
<th>NUMBER REQUIRED FOR DISPATCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Constant Speed Drives (CSD) (600-2B19)</td>
<td>A 2 1</td>
<td>(M)(O) One may be inoperative provided:</td>
</tr>
<tr>
<td>a) Respective GEN 1/2 switch is selected to OFF/RESET,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b) Respective IDG is disconnected,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c) APU generator is operated continuously throughout flight,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d) AFM performance corrections for APU ON are applied,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e) APU Battery and APU Battery Charger System is operative,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>f) Cross-side Hydraulic Motor Pump (ACMP) is selected ON,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g) Same side Hydraulic AC Motor Pump (ACMP) is operative,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>h) Repairs are made within 30 flight hours (cumulative), and</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SYSTEM & SEQUENCE NUMBERS

24 – ELECTRICAL POWER

11-01 Integrated Drive Generator (IDG) Systems
This is an **Airline’s Approved MEL of the same system for the same aircraft. Note the differences:** Repair Interval, No Maintenance actions, and where to place the placard

MEL CL600-2C10 / CL600-2D24 (CRJ 700/900)

STANDARD PRACTICE 3603

D. Chapter 24 Electrical Power

<table>
<thead>
<tr>
<th>MEL</th>
<th>Item</th>
<th>Cat</th>
<th>Inst</th>
<th>Req</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-11-1a</td>
<td>Integrated Drive Generators (IDG) Systems / Constant Speed Drives (CSD)</td>
<td>A</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Remarks or Exceptions:

(0) One may be inoperative provided:

(1) Respective GEN 1/2 switch is selected to OFF/RESET,
(2) Respective IDG is disconnected,
(3) APU generator is operated continuously throughout flight,
(4) AFM performance corrections for APU ON are applied,
(5) Operations are conducted at or below FL 320, and

(6) Repairs are made within 100 engine operating hours (cumulative).

Placarding:

Place M-74B on Electrical Power Panel.

Maintenance Procedure:

None Required

Operations Procedure:

Aircraft operations restricted to FL 320 and below. APU on continuously performance corrections are incorporated in SkyWest normal performance procedures.

(1) For an inoperative Constant Speed Drive, do as follows:
TYPICAL MEL Deferral Scenario

STEP 1: Aircrew becomes aware of a fault
TYPICAL MEL Deferral Scenario

STEP 2: Aircrew Writes it up in the logbook
TYPICAL MEL Deferral Scenario

STEP 3: Maintenance is dispatched to troubleshoot the fault.

During the troubleshooting process it is decided to defer the write-up because there is not enough time before the next flight, and further, the part is not in stock.
TYPICAL MEL Deferral Scenario

STEP 4: The Airline’s Maintenance Operations Center issues the MEL Deferral control number for tracking and follow-up
“23. **Placarding.** Each inoperative instrument or equipment item must be placarded to inform and remind the crewmembers and maintenance personnel of the item condition. To the extent practical, placards should be located adjacent to the control or indicator for the item affected; however, unless otherwise specified (i.e. AFM), placard wording and location will be determined by the aircraft operator.”
TYPICAL MEL Deferral Scenario

STEP 5: Placard the equipment
STEP 6: Issue a Placard for the logbook for visibility by subsequent aircrews. Note the control number issued by the Maintenance Operations Center.
TYPICAL MEL Deferral Scenario

Behind the scenes, the AOG desk of the Maintenance Operations Center tries to locate the part which is not in stock. It’s options:

- Cannibalize a part from another aircraft
- Borrow or lease the part from an airline pool
- Issue a Purchase order for a part
TYPICAL MEL Deferral Scenario

Now you, the distributor gets the PO and the call for the AOG due in three days.
A Recent actual MEL Deferral

“Right Landing Light Out” in logbook. Note MEL Reference for deferral
A Recent actual MEL Deferral

<table>
<thead>
<tr>
<th>DMI MEL/CDL Number</th>
<th>CAT</th>
<th>Date Origin</th>
<th>Ticket Number</th>
<th>Discrepancy</th>
<th>Log Page</th>
<th>Entered By</th>
<th>Date Closed</th>
<th>Log Page</th>
<th>Closed By</th>
</tr>
</thead>
<tbody>
<tr>
<td>78-7295/3</td>
<td></td>
<td>1/25/2013</td>
<td>DMS 747295/3</td>
<td>LH air conditioning. Permanent Repair @ 600EC Red ETD 2015-00157</td>
<td>78-7295/3</td>
<td>signed by</td>
<td>7/6/15</td>
<td>78-7295/3</td>
<td>7/6/15</td>
</tr>
<tr>
<td>33-21-01</td>
<td>C</td>
<td>4/22/13</td>
<td>83150</td>
<td>STERILE COCKPIT LIGHT</td>
<td>6-36595</td>
<td>LA</td>
<td>25/5/13</td>
<td>6-36595</td>
<td>25/5/13</td>
</tr>
<tr>
<td>CDL</td>
<td>L</td>
<td>5/7/13</td>
<td>83488</td>
<td>STATIC WICK MISSING</td>
<td>78-0893</td>
<td>25/5/13</td>
<td>5/7/13</td>
<td>78-0893</td>
<td>5/7/13</td>
</tr>
</tbody>
</table>

It also is entered on the logbook’s index so subsequent flight crews can have a quick reference of what’s open. For this airline, note the “Ticket Number” which acts as a unique control number.
A Recent actual MEL Deferral

A simple decal is affixed further apprising the aircrew of a defective system that has been deferred. Note the same “Ticket Number”
NOTE: Rates of deferrals are closely monitored!

Major Airline Sample:
Not unexpectedly, the trend is towards electronic logbooks which would also contain provisions for Deferrals as shown.
By the way, you know the weather is creating havoc in the system when you get a text message like this:
AIRLINE OPERATIONS MENU

- Maintenance Deferrals per Minimum Equipment List (MEL) Procedures, OR, “How did I get an AOG order for an AOG that will occur three days from now?”

- AIRLINE COMPONENT RELIABILITY PROGRAMS.
Before getting started, I’d like to make clear:

Reliability Programs per se, *are NOT an FAR requirement*, but have developed over many years into best practices. Because of this, *there are many variations* as to how such practices are implemented by various air carriers.
How may we define “Reliability”?

From AC 120-79:
“Another desired result is that your aircraft operate with a level of reliability that is consistent with the goals of your maintenance program. “Reliability” is a broad term in this context and is an expression of dependability and the probability that an item, including an aircraft, engine, propeller, or component, will perform its required function under specified conditions without failure, for a specified period of time. Testing for effectiveness usually consists of collecting and analyzing operational performance data, such as:

• Maintenance-related delays and cancellations,
• Failure rates of parts and components after they are approved for RTS,
• Discrepancy rates of aircraft after heavy maintenance, and
• Related trend analysis.”
Although not required to do so, many airlines have their Reliability Programs incorporated within their CASS system. As reflected in AC 120-79:

“...if you do have an approved reliability program, you should incorporate it into your CASS as the means of performing operational data collection and analysis to monitor the effectiveness of your maintenance program.”

Figure 3

Major CASS Activities

Reliability Programs neatly feed and fit into the CASS System
AC 120-16:

1-7. AIR CARRIER MAINTENANCE PROGRAM ELEMENTS. Your air carrier maintenance program includes the following 10 elements.

- Airworthiness responsibility,
- Air carrier maintenance manual,
- Air carrier maintenance organization,
- Accomplishment and approval of maintenance and alterations,
- Maintenance schedule,
- Required Inspection Items (RII),
- Maintenance recordkeeping system,
- Contract maintenance,
- Personnel training, and
- CASS.

<table>
<thead>
<tr>
<th>If you operate under 14 CFR—</th>
<th>You—</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part 121</td>
<td>must have a CASS as required by § 121.373.</td>
</tr>
<tr>
<td>Part 129</td>
<td>must have FAA approval for the maintenance program and may have a CASS if it is consistent with the regulations of the State of the operator.</td>
</tr>
</tbody>
</table>
FAR 121.373 — Continuing analysis and surveillance.
(a) Each certificate holder shall establish and maintain a system for the continuing *analysis* and *surveillance* of the performance and *effectiveness* of its inspection program and the program covering other maintenance, preventive maintenance, and alterations and for the *correction* of any deficiency in those programs, regardless of whether those programs are carried out by the certificate holder or by another person.
Many Larger air carriers have their Reliability Programs “Approved”. Such Approvals may take the form of an Operation Specifications Page on their Certificate

<table>
<thead>
<tr>
<th>U.S. Department of Transportation</th>
<th>Operations Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federal Aviation Administration</td>
<td></td>
</tr>
</tbody>
</table>

- Conduct continuous airworthiness maintenance programs.
 - D072
- Use an approved aircraft inspection program (AAIP).
 - D073
- Use a reliability program for the entire aircraft.
 - D074
- Use a reliability program for airframe, powerplant, systems, or selected items.
 - D075
- Use short-term escalation.
 - D076
- Contractually arrange with other certificated operators for maintenance of the entire aircraft.
 - D077
- Use the provisions of contractual agreements limited to specific maintenance functions.
 - D078
- Participate in a reliability program under a contractual agreement.
 - D079
Many Larger air carriers have their Reliability Programs “Approved”. Such Approvals may also take the form of an Approved Procedure.

<table>
<thead>
<tr>
<th>Maintenance Division Policies and Procedures - Chapter 1</th>
<th>Section 5 RELIABILITY PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Approval</td>
<td>Date 05/29/2012</td>
</tr>
<tr>
<td>Vice President Maintenance</td>
<td></td>
</tr>
<tr>
<td>Reviewed and Approved</td>
<td>Date 05/29/2012</td>
</tr>
<tr>
<td>PMI FAACMO</td>
<td></td>
</tr>
</tbody>
</table>
The FAA’s acceptance of the extent and depth of an air carrier’s Reliability Program appears to generally align with the expectations for CASS based on fleet size. (ref AC 120-79)

APPENDIX 1. SAMPLE CASS FOR A LARGE CERTIFICATE HOLDER

<table>
<thead>
<tr>
<th>Type of Certificate Holder</th>
<th>Fleet composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleet composition</td>
<td>250 turbojet airplanes; B-737, B-757, A-320.</td>
</tr>
</tbody>
</table>

APPENDIX 2. SAMPLE CASS FOR A MEDIUM CERTIFICATE HOLDER

<table>
<thead>
<tr>
<th>Type of Certificate Holder</th>
<th>Fleet composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleet composition</td>
<td>75 turboprop and turbojet airplanes; ATR–42, Canadair Regional Jets.</td>
</tr>
</tbody>
</table>

APPENDIX 3. SAMPLE CASS FOR A SMALL CERTIFICATE HOLDER

<table>
<thead>
<tr>
<th>Type of Certificate Holder</th>
<th>Fleet composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fleet composition</td>
<td>Two turbojet airplanes; Gulfstream G-III (12 seats).</td>
</tr>
</tbody>
</table>
EVOLUTION OF RELIABILITY PROGRAMS

THE FIRST GENERATION:

HARD TIME:

• Based on a belief that each functional part of a transport aircraft needed periodic disassembly inspection; i.e., an overhaul.

• During this 1st generation, most major parts were “hard timed”

Today, a smaller list of parts that are ‘hard timed’ include Engines and Landing gear
EVOLUTION OF RELIABILITY PROGRAMS

EVOLVING GENERATIONS:

As the industry grew and evolved into more complex systems, the notion of so many parts requiring ‘hard time’ became mostly obsolete.

ON CONDITION:

• It requires that the part be periodically inspected to determine if it can continue in service; it does not require overhaul to make this determination.

Simple examples of ‘on-condition’ parts include brakes and tires.
The procedures for control of so many parts by either Hard Time or On-Condition became awkward and burdensome, often inhibiting logical adjustment. To alleviate this situation, the FAA worked with the airlines to develop more responsive methods of controlling maintenance without sacrificing safety or FAA regulatory responsibility. This method of control was oriented toward mechanical performance rather than to predicting failure wear out points, as was the case in the previous methods. The new method was entitled “Reliability Control” because its major emphasis was toward maintaining failure rates below a predetermined value; i.e., an acceptable level of reliability.

• Parts are neither ‘hard timed’ or ‘on-condition’ as previously described.

• Condition monitoring is accomplished by appropriate mean available to the operator for finding problem areas by monitoring performance and maintaining failure rates below an acceptable value or level of reliability.
1. **PURPOSE.** This circular provides information and guidance material which may be used to design or develop maintenance control programs utilizing reliability control methods.
Another early contributor to the development of modern Reliability Systems. Note the term “Reliability-Centered Maintenance”
Another early contributor with profound effects on how maintenance is performed including reliability, was the ATA’s MSG-2 (revision at the time). MSG-Maintenance Steering Group.

ATA MSG-3

Operator/Manufacturer
Scheduled Maintenance Development

Revision 2002.1
A simple diagram of the process

System for collecting KEY relevant operational data which may include:
- Pilot Write-ups
- Maintenance Write-ups
- Delay and Cancellations Attributable to Maint.

Data is fed through “Alert Level” Filters

Issues which are over the alert level are flagged. The initial alert typically draws attention to an ATA Chapter being ‘Over Alert’.

Effectiveness of Corrective Action is monitored

Corrective Action is Implemented

Action is triggered to drill down, typically using Root Cause Analysis Procedures
A simple diagram of the process

System for collecting KEY relevant operational data which may include:
- Pilot Write-ups
- Maintenance Write-ups
- Delay and Cancellations Attributable to Maint.

Data is fed through "Alert Level" Filters

Issues which are over the alert level are flagged. The initial alert typically draws attention to an ATA Chapter being ‘Over Alert’.

Effectiveness of Corrective Action is monitored

Corrective Action is Implemented

Action is triggered to drill down, typically using Root Cause Analysis Procedures
Depending on the scope of the ‘Alert’, a team may be assembled, or Process Owners may be tasked to investigate the circumstances as needed:

- Engineering
- The MRO entity
- The Manufacturer
- Line Maintenance
- Base Maintenance
- Suppliers

Action is triggered to drill down, typically using Root Cause Analysis Procedures.
Depending on the scope of the ‘Alert’, a team may be assembled, or Process Owners may be tasked to investigate the circumstances as needed:

- Engineering
- The MRO entity
- The Manufacturer
- Line Maintenance
- Base Maintenance
- Suppliers

Results of the analysis may yield causes such as, but not limited to:

- Components being scheduled for removal for incorporation of AD’s or SB’s
- Incorrect troubleshooting procedures
- Chronic or Rogue components or aircraft
- “Age” Issues
- New Software Issues
- Training Issues
- Fault Isolation Manual (FIM) shortcomings
- Quality Issues
14.5. Performance Standards

14.5.1. The Performance Standard is the computed measure of acceptable performance for a component or aircraft system. The Reliability Program uses the following units of measure for systems and components:

14.5.1.1. Pilot Reports (PIREPs) and Maintenance Reports (MAREPs) - Rate per 1000 flight hours.

14.5.1.2. Unscheduled Component Removals (UCR) - Rate per 1000 flight hours.

14.5.1.3. Engine Shutdowns - Rate per 1000 engine hours.
Reliability Analyst converts raw data into rates per 1,000 Flight Hours (FH) for each ATA and unscheduled part. Defines which of each has exceeded the computed alert level (EAL)

Reliability Analyst reviews all EALs and creates an M-38 record In Accordance With (IAW) this Section.

To Corrective Action

Figure 3. Data Review Flow Chart
A key to any successful Reliability System is to implement a statistically based formula which establishes the “Alert Level”

Airline Manual excerpt

14.5. Performance Standards

14.5.2. PIREPs, MAREPs and UCRs for each ATA system have a computed Alert Level.

14.5.3. The Alert Level is the 6 month experienced average rate plus 1.50 times the standard deviation for that 6 months. A multiplier of 1.50 is used to desensitize the Alert Level so that a single random failure does not cause the Alert Level to be exceeded.

 14.5.3.1. The Alert Level is expressed as follows:
 14.5.3.1.1. Alert Level = Y x + s (DF) In which Y x = 6 month average; s = standard deviation for the 6 month period; DF = Desensitizing Factor = 1.5

14.5.4. Exceeding an Alert Level (EAL) indicates a problem in components or systems that have occurred at an excessive frequency and may indicate a possible problem.

Pilot Reports = (PIREPs)
Maintenance Reports = (MAREPs)
Unscheduled Component Removals = (UCR)
A key to any successful Reliability System is to implement a statistically based formula which establishes the “Alert Level”

ALERT LEVELS CALCULATIONS

There are several methods of calculation alert levels, all of them are well known as statistical error calculation. Main or most common are:

1. MEAN + 3 SD
2. MEAN + STANDARD DEVIATION OF MEANS + 3 SD
3. MEAN x 1,3
4. MEAN + 2 SD
5. Weibull Method

“CALCULATION OF ALERT LEVELS FOR RELIABILITY”
Jan Amborski
Institute of Aviation
Warsaw, Poland
Al. Krakowska 110/114, 02-256
E-mail: j_amborski@yahoo.com
Operators needed to collect, organize and exchange reliability data between many different organizations: Manufacturers, suppliers, regulatory authorities, each other. An industry standard allowed all parties to do this efficiently and cost effectively.

Reliability Data Collection and Exchange SPEC2000 Chapter 11
BY THE WAY:

Chapter 13-2 Reliability Metrics

Mean Time Between Removals - MTBR
A performance figure calculated by dividing the total unit flying hours accrued in a period by the number of unit removals (scheduled plus unscheduled) that occurred during the same period.

\[MTBR = \frac{\text{(Quantity Per Aircraft) multiplied by (Flight Hours)}}{\text{Total Removals (Unscheduled plus scheduled)}} \]

\[MTR = \frac{(TQA \times FHL)}{TRS} \]

Mean Cycles Between Removals - MCBR
Similar to MTBR, but with cycles instead of hours.

\[MCR = \frac{(TQA \times FCL)}{TRS} \]

Mean Time Between Unscheduled Removals - MTBUR
A performance figure calculated by dividing the total unit flying hours accrued in a period by the number of unit unscheduled removals that occurred during the same period.

\[MTBUR = \frac{\text{(Quantity Per Aircraft) multiplied by (Flight Hours)}}{\text{Total Unscheduled Removals}} \]

\[MTU = \frac{(TQA \times FHL)}{CUC} \]

Mean Cycles Between Unscheduled Removals - MCBUR
Similar to MTBUR, but with cycles instead of hours.

\[MCU = \frac{(TQA \times FCL)}{CUC} \]

ATA SPEC 2000 Chapter 13 contains many more defined Reliability Metrics
AIM Solutions Consulting’s Roy Resto is available to team with you on these and many more:

- New Repair Station Startup or FAR 145 Repair Station application
- EASA Approval for Repair Station
- ASA-100 Accreditation
- AS 9120/9110/9100 Accreditation
- Management of your responses to major bids, RFQ’s, RFP’s, Solicitations, contracts, and agreements
- New ODA startup
- Recruiting specialized talent
- Temporary staffing of Executive or Management positions
- Crisis Intervention: Self Disclosures, FAA Certificate in predicament, key customer audit resolution
- Auditing your suppliers
- Internal Auditing
- Performing Research
- Technical and/or Manual writing
- Project Management
- Training on a wide catalog of topics including, but not limited to:
 - ESD, Receiving Inspection, SUPS, Quality Standards, FAR’s, AC’s, Order’s, Power by the hour contracts, Elements of Traceability for surplus parts, Use of DAR’s for 8130-3’s, Use of FAA form 8130-3, Standardized industry language and definitions, human factors, Airline Economics, Life Limited Parts, Self Life, Use of PMA, Standard, and TSO Parts, BER, Drop Shipping, Direct Shipping, New parts certification, Tags, C of C’s, National Stock Numbers

Roy Resto is fully profiled on linked in at
www.linkedin.com/in/royresto
Email: royresto@aol.com
414-467-3063
THANK YOU FOR ATTENDING!